Exon skipping for nonsense mutations in Duchenne muscular dystrophy: too many mutations, too few patients?
نویسندگان
چکیده
INTRODUCTION Duchenne muscular dystrophy (DMD), one of the most common and lethal genetic disorders, is caused by mutations of the dystrophin gene. Removal of an exon or of multiple exons using antisense molecules has been demonstrated to allow synthesis of truncated 'Becker muscular dystrophy-like' dystrophin. AREAS COVERED Approximately 15% of DMD cases are caused by a nonsense mutation. Although patient databases have previously been surveyed for applicability to each deletion mutation pattern, this is not so for nonsense mutations. Here, we examine the world-wide database containing notations for more than 1200 patients with nonsense mutations. Approximately 47% of nonsense mutations can be potentially treated with single exon skipping, rising to 90% with double exon skipping, but to reach this proportion requires the development of exon skipping molecules targeting some 68 of dystrophin's 79 exons, with patient numbers spread thinly across those exons. In this review, we discuss progress and remaining hurdles in exon skipping and an alternative strategy, stop-codon readthrough. EXPERT OPINION Antisense-mediated exon skipping therapy is targeted highly at the individual patient and is a clear example of personalized medicine. An efficient regulatory path for drug approval will be a key to success.
منابع مشابه
Dystrophin Exon 29 Nonsense Mutations Cause a Variably Mild Phenotype
Background Nonsense mutations in the dystrophin gene usually result in a severe Duchenne muscular dystrophy phenotype. Findings We describe a 7-year-old boy with a rare pathogenic mutation in exon 29 c.3940C>T p.(Arg1314Ter) resulting in exon skipping, in turn rescuing the phenotype from a severe Duchenne type to a milder Becker muscular dystrophy type. No adults have been described with this...
متن کاملAntisense-induced multiexon skipping for Duchenne muscular dystrophy makes more sense.
Dystrophin deficiency, which leads to severe and progressive muscle degeneration in patients with Duchenne muscular dystrophy (DMD), is caused by frameshifting mutations in the dystrophin gene. A relatively new therapeutic strategy is based on antisense oligonucleotides (AONs) that induce the specific skipping of a single exon, such that the reading frame is restored. This allows the synthesis ...
متن کاملEmerging genetic therapies to treat Duchenne muscular dystrophy.
PURPOSE OF REVIEW Duchenne muscular dystrophy is a progressive muscle degenerative disease caused by dystrophin mutations. The purpose of this review is to highlight two emerging therapies designed to repair the primary genetic defect, called 'exon skipping' and 'nonsense codon suppression'. RECENT FINDINGS A drug, PTC124, was identified that suppresses nonsense codon translation termination....
متن کاملMultiple exon skipping strategies to by-pass dystrophin mutations
Manipulation of dystrophin pre-mRNA processing offers the potential to overcome mutations in the dystrophin gene that would otherwise lead to Duchenne muscular dystrophy. Dystrophin mutations will require the removal of one or more exons to restore the reading frame and in some cases, multiple exon skipping strategies exist to restore dystrophin expression. However, for some small intra-exonic ...
متن کاملReengineering a transmembrane protein to treat muscular dystrophy using exon skipping.
Exon skipping uses antisense oligonucleotides as a treatment for genetic diseases. The antisense oligonucleotides used for exon skipping are designed to bypass premature stop codons in the target RNA and restore reading frame disruption. Exon skipping is currently being tested in humans with dystrophin gene mutations who have Duchenne muscular dystrophy. For Duchenne muscular dystrophy, the rat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Expert opinion on biological therapy
دوره 12 9 شماره
صفحات -
تاریخ انتشار 2012